-
Khouj, E.M., Prosser, S.L., Tada, H., Chong, W.M., Liao, J.-C., Sugasawa, K., Morrison, C.G. (2019) Journal of Cell Science, 132(19), jcs228486.
ABSTRACTCentrin 2 is a small conserved calcium-binding protein that localizes to the centriolar distal lumen in human cells. It is required for efficient primary ciliogenesis and nucleotide excision repair (NER). Centrin 2 forms part of the xeroderma pigmentosum group C protein complex. To explore how centrin 2 contributes to these distinct processes, we mutated the four calcium-binding EF-hand domains of human centrin 2. Centrin 2 in which all four EF-hands had been mutated to ablate calcium binding (4DA mutant) was capable of supporting in vitro NER and was as effective as the wild-type protein in rescuing the UV sensitivity of centrin 2-null cells. However, we found that mutation of any of the EF-hand domains impaired primary ciliogenesis in human TERT-RPE1 cells to the same extent as deletion of centrin 2. Phenotypic analysis of the 4DA mutant revealed defects in centrosome localization, centriole satellite assembly, ciliary assembly and function and in interactions with POC5 and SFI1. These observations indicate that centrin 2 requires calcium-binding capacity for its primary ciliogenesis functions, but not for NER, and suggest that these functions require centrin 2 to be capable of forming complexes with partner proteins. -
Lo, C.-H., Lin, I.-H., Yang, T.T., Huang, Y.-C., Tanos, B.E., Chou, P.-C., Chang, C.-W., Tsay, Y.-G., Liao, J.-C., Wang, W.-J. (2019) Journal of Cell Biology, 218(10), 3489-3505.
ABSTRACTPrimary cilia are microtubule-based organelles that play important roles in development and tissue homeostasis. Tau-tubulin kinase-2 (TTBK2) is genetically linked to spinocerebellar ataxia type 11, and its kinase activity is crucial for ciliogenesis. Although it has been shown that TTBK2 is recruited to the centriole by distal appendage protein CEP164, little is known about TTBK2 substrates associated with its role in ciliogenesis. Here, we perform superresolution microscopy and discover that serum starvation results in TTBK2 redistribution from the periphery toward the root of distal appendages. Our biochemical analyses uncover CEP83 as a bona fide TTBK2 substrate with four phosphorylation sites characterized. We also demonstrate that CEP164-dependent TTBK2 recruitment to distal appendages is required for subsequent CEP83 phosphorylation. Specifically, TTBK2-dependent CEP83 phosphorylation is important for early ciliogenesis steps, including ciliary vesicle docking and CP110 removal. In summary, our results reveal a molecular mechanism of kinase regulation in ciliogenesis and identify CEP83 as a key substrate of TTBK2 during cilia initiation. -
Yang, T.T., Tran T.M.N., Chong, W.M., Liao, J.-C. (2019) Molecular Biology of the Cell, 30, 828-837.
ABSTRACTPrimary cilia play a vital role in cellular sensing and signaling. An essential component of ciliogenesis is intraflagellar transport (IFT), which is involved in IFT protein recruitment, axonemal engagement of IFT protein complexes, and so on. The mechanistic understanding of these processes at the ciliary base was largely missing, because it is challenging to observe the motion of IFT proteins in this crowded region using conventional microscopy. Here, we report short-trajectory tracking of IFT proteins at the base of mammalian primary cilia by optimizing single-particle tracking photoactivated localization microscopy for IFT88-mEOS4b in live human retinal pigment epithelial cells. Intriguingly, we found that mobile IFT proteins “switched gears” multiple times from the distal appendages (DAPs) to the ciliary compartment (CC), moving slowly in the DAPs, relatively fast in the proximal transition zone (TZ), slowly again in the distal TZ, and then much faster in the CC. They could travel through the space between the DAPs and the axoneme without following DAP structures. We further revealed that BBS2 and IFT88 were highly populated at the distal TZ, a potential assembly site. Together, our live-cell single-particle tracking revealed region-dependent slowdown of IFT proteins at the ciliary base, shedding light on staged control of ciliary homeostasis. -
Pan, T.-C., Chieh Wen, L., Chong, W.M., Tsai, C.-N., Lee, K.-Y., Chen, P.-Y., Liao, J.-C., Yu, M.-J. (2019) Journal of Proteome Research, 18 (7), 2813-2825.
ABSTRACTProtein phosphorylation is a reversible post-translational modification that regulates many biological processes in almost all living forms. In the case of the hepatitis C virus (HCV), the nonstructural protein 5A (NS5A) is believed to transit between hypo- and hyper-phosphorylated forms that interact with host proteins to execute different functions; however, little was known about the proteins that bind either form of NS5A. Here, we generated two high-quality antibodies specific to serine 235 nonphosphorylated hypo- vs serine 235 phosphorylated (pS235) hyper-phosphorylated form of NS5A and for the first time segregated these two forms of NS5A plus their interacting proteins for dimethyl-labeling based proteomics. We identified 629 proteins, of which 238 were quantified in three replicates. Bioinformatics showed 46 proteins that preferentially bind hypo-phosphorylated NS5A are involved in antiviral response and another 46 proteins that bind pS235 hyper-phosphorylated NS5A are involved in liver cancer progression. We further identified a DNA-dependent kinase (DNA-PK) that binds hypo-phosphorylated NS5A. Inhibition of DNA-PK with an inhibitor or via gene-specific knockdown significantly reduced S232 phosphorylation and NS5A hyper-phosphorylation. Because S232 phosphorylation initiates sequential S232/S235/S238 phosphorylation leading to NS5A hyper-phosphorylation, we identified a new protein kinase that regulates a delicate balance of NS5A between hypo- and hyper-phosphorylation states, respectively, involved in host antiviral responses and liver cancer progression. -
Zhang, X., Li, Z., Wang, P.-J., Liao, K.Y. Chou, S.-J., Chang, S.-F., Liao, J.-C. (2019) Proceedings of 2019 IEEE 15th International Symposium on Biomedical Imaging.
ABSTRACTA brain contains a large number of structured regions responsible for diverse functions. Detailed region annotations upon stereotaxic coordinates are highly rare, prompting the need of using one or very few available annotated results of a specific brain section to label images of broadly accessible brain section samples. Here we develop a one-shot learning approach to segment regions of mouse brains. Using the highly ordered geometry of brains, we introduce a reference mask to incorporate both the anatomical structure (visual information) and the brain atlas into brain segmentation. Using the UNet model with this reference mask, we are able to predict the region of hippocampus with high accuracy. We further implement it to segment brain images into 95 detailed regions augmented from the annotation on only one image from Allen Brain Atlas. Together, our one-shot learning method provides neuroscientists an efficient way for brain segmentation and facilitates future region-specific functional studies of brains. -
Chu, S.-H., Lo, L.-L., Lai, R.L., Yang, T.T., Liao, J.-C., Huang, N.-T. (2019) Biomicrofluidics, 13, 014105.
ABSTRACTThe primary cilium plays an important role in mechanosensation in mammalian cells. To understand mechanosensation in the primary cilium, we combined a microfluidic device with super-resolution microscopy to study the primary cilium phenotypes. The microfluidic system enabled the precise control of the flow shear within a well-confined cell-culture environment. In addition, in situ cilia fixation was possible by switching from the culture medium to the fixation buffer instantaneously, which preserved the real-time cilium phenotype under the flow shear. After fixation, multiple cilium-specific proteins were immunostained to quantify the cilia bending behavior. We found that >50% of the primary cilia of mouse inner medullary collecting duct cells were highly aligned with the direction of flow under 11 Pa shear stress. Finally, we used super-resolution microscopy to observe the redistribution of two major cilium-specific proteins under flow shear, acetylated alpha-tubulin, and intraflagellar transport protein 88. To the best of our knowledge, this is the first platform to combine a microfluidic device with super-resolution microscopy to enable flow stimulation and in situ fixation for the observation of ciliary protein. This system can potentially be applied to the future development of a stimulation-enabled organ-on-a-chip to observe the intercellular signaling of primary cilia or for the analysis of disease mechanisms associated with ciliary mutations at the organ level. -
Yang, T.T., Chong, W.M., Wang, W.-J., Mazo G., Tanos, B., Chen, Z., Tran T.M.N., Chen, Y.-D., Weng, R.R., Huang, C.-E., Jane, W.-N. Tsou, M.-F.B., Liao, J.-C. (2018) Nature Communications, 9, 2023.
ABSTRACTDistal appendages (DAPs) are nanoscale, pinwheel-like structures protruding from the distal end of the centriole that mediate membrane docking during ciliogenesis, marking the cilia base around the ciliary gate. Here we determine a super-resolved multiplex of 16 centriole-distal-end components. Surprisingly, rather than pinwheels, intact DAPs exhibit a cone-shaped architecture with components filling the space between each pinwheel blade, a new structural element we term the distal appendage matrix (DAM). Specifically, CEP83, CEP89, SCLT1, and CEP164 form the backbone of pinwheel blades, with CEP83 confined at the root and CEP164 extending to the tip near the membrane-docking site. By contrast, FBF1 marks the distal end of the DAM near the ciliary membrane. Strikingly, unlike CEP164, which is essential for ciliogenesis, FBF1 is required for ciliary gating of transmembrane proteins, revealing DAPs as an essential component of the ciliary gate. Our findings redefine both the structure and function of DAPs. -
Weng, R.R., Yang, T.T., Huang, C.-E., Chang, C.-W., Wang, W.-J., Liao, J.-C. (2018) Biophysical Journal, 115, 1-13.
ABSTRACTThe primary cilium is an essential organelle mediating key signaling activities, such as sonic hedgehog signaling. The molecular composition of the ciliary compartment is distinct from that of the cytosol, with the transition zone (TZ) gated the ciliary base. The TZ is a packed and organized protein complex containing multiple ciliopathy-associated protein species. Tectonic 2 (TCTN2) is one of the TZ proteins in the vicinity of the ciliary membrane, and its mutation is associated with Meckel syndrome. Despite its importance in ciliopathies, the role of TCTN2 in ciliary structure and molecules remains unclear. Here, we created a CRISPR/Cas9 TCTN2 knockout human retinal pigment epithelial cell line and conducted quantitative analysis of geometric localization using both wide-field and super-resolution microscopy techniques. We found that TCTN2 depletion resulted in partial TZ damage, loss of ciliary membrane proteins, leakage of intraflagellar transport protein IFT88 toward the basal body lumen, and cilium shortening and curving. The basal body lumen occupancy of IFT88 was also observed in si-RPGRIP1L cells and cytochalasin-D-treated wild-type cells, suggesting varying lumen accessibility for intraflagellar transport proteins under different perturbed conditions. Our findings support two possible models for the lumen leakage of IFT88, i.e., a tip leakage model and a misregulation model. Together, our quantitative image analysis augmented by super-resolution microscopy facilitates the observation of structural destruction and molecular redistribution in TCTN2-/- cilia, shedding light on mechanistic understanding of TZ-protein-associated ciliopathies. -
Hsu, W.-H., Wang, W.-J., Lin, W.-Y., Juang, Y.-M., Lai, C.-C., Liao, J.-C., Chen, H.-C. (2018) EMBO Reports, e45607.
ABSTRACTBipolar spindle assembly is necessary to ensure the proper progression of cell division. Loss of spindle pole integrity leads to multipolar spindles and aberrant chromosomal segregation. However, the mechanism underlying the maintenance of spindle pole integrity remains unclear. In this study, we show that the actin‐binding protein adducin‐1 (ADD1) is phosphorylated at S726 during mitosis. S726‐phosphorylated ADD1 localizes to centrosomes, wherein it organizes into a rosette‐like structure at the pericentriolar material. ADD1 depletion causes centriole splitting and therefore results in multipolar spindles during mitosis, which can be restored by re‐expression of ADD1 and the phosphomimetic S726D mutant but not by the S726A mutant. Moreover, the phosphorylation of ADD1 at S726 is crucial for its interaction with TPX2, which is essential for spindle pole integrity. Together, our findings unveil a novel function of ADD1 in maintaining spindle pole integrity through its interaction with TPX2.
Publications